In silico prediction of IncRNA function

Umberto Perron, Paolo Provero and Ivan Molineris

Università degli Studi di Torino – Molecular Biotechnology Center

Introducing IncRNAs

- IncRNAs are defined as non-coding transcripts longer than ~200 nucleotides
- They act functionally as RNAs
- Brockdorff N, et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. <u>1992</u> Oct 30;71(3):515-26.
- Brannan CI, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol. <u>1990</u> Jan;10(1):28-36.
- Okazaki Y, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs, Nature 420, 563-573 (5 December <u>2002</u>)

Introducing IncRNAs

 Combined human gene annotations from Ensembl (release 64), NCBI's RefSeq, UCSC Genome Browser and IncRNAs catalogued by Cabili et al., 2011.

Introducing IncRNAs

• The existence of a large class of IncRNAs with potential regulatory function is now widely accepted.

Mercer T, 2009

The annotation problem

- At the moment the most autoritative database of IncRNA annotations is LncRNADisease.
- It comprehends 321 IncRNA experimentally linked to pathological conditions.

Genome-wide annotation of IncRNAs

- We know very little about the function of the vast majority of IncRNAs.
- Therefore the need for a genome-wide, systematic approach to infer putative functions for a large number of IncRNAs.

Coexpression networks for functional prediction

- Biological functions are related to network modules rather than single genes.
- In the past our group has found that coexpression networks are a powerful tool to make functional predictions and identify candidate disease-genes among coding genes.
- This is even more true with the integration of human-mouse conserved coexpression (Ala et al. 2008; Piro et al. 2011).

Coexpression networks for functional prediction

- We expand and improve on those methods in a multi-species conservation context and we apply them to IncRNA functional prediction.
- Because coding genes are much better annotated than IncRNAs, we aim to project known functional information regarding proteins onto non coding genes.
- We assumed that, if a IncRNA shows an expression profile that correlates with those of a set of coding genes, that IncRNA is probably involved in the same function (guilt by association principle).

The pipeline

RNA-Seq dataset

- Curated by Necsulea and colleagues in 2014.
- 185 RNA-seq samples
- 10 species (human, chimpanzee, gorilla, orangutan, macaque, mouse, opossum, platypus, chicken and frog)
- 8 organs (cortex or whole brain, cerebellum, heart, kidney, liver, placenta, ovary and testes)
- The expression of 22000 protein-coding genes and 5400 IncRNAs was measured.

The pipeline

Reciprocal rank correlation

Han

• We defined w(a, b) as the RRC between gene a and gene b.

$$w(a,b) = min(r(a,b),r(b,a))$$

The pipeline

Ontologies

- We used two controlled vocabularies to annotate genes:
 - Human Phenotype Ontology (HP) version 67
 - Gene Ontology (GO) downloaded from ensembl version 75
- For both GO and HP we only used terms that had between 4 and 2000 genes.

Functional prediction score

Given a gene a and a set of n genes G_k annotated to some ontology keyword k, we computed:

$$S(a, G_k) = (\prod_{i=1}^{n} w(i, a))^{1/n}$$

- This score has the properties of the rank product described in Breitling et Al. 2006.
- It was developed for differential expression analysis.
- It provides a straightforward and statistically stringent way to identify biologically relevant expression changes.
- RP results are reliable in highly noisy data.

Functional prediction score

Leave-one-out validation

- We considered only genes already annotated with GO terms (mostly coding genes)
- we performed a ROC analysis:
 - If G_k is the set of all genes annotated to k; each gene $a \notin G_k$ is considered as negative.
 - The curve is computed based on this binary classif cations and the FPS
 - if $a \in G_k$ we use instead $S(a, G_k \{a\})$
 - for k the number of positives is much less than the number of negatives, therefore we considered, for each k independently, only a randomly chosen subset of size G_k.

Non-redundant Gene Ontology

- For ROC analysis we experimented with a "non redundant" version of GO where:
 - we consider each domain (BP, CC, MF) separately
 - we annotate gene *a* with the most specific term among those it is associated with.

ROC analysis

....

• Human network, AUC 0,6474

Homology relatioships

- We need to project the GO annotations available for humans into other species
- Therefore to translate non-human genes into human genes.
- We used:
 - orthologous genes downloaded from biomart.org [ensembl 75] for coding genes
 - Necsulea et al.'s IncRNAs families.
- We also took into account one-to-many homology relationships.

ROC analysis

• All single-species networks with non-redundant GO

Hsapiens Predictions

• Here the hsapiens single-species FPS is used to rank our predictions.

Human network					
GO_ld	GO_term	Gene_ld			
GO:0042738	exogenous drug catabolic process	ENSG00000228826			
GO:0060968	regulation of gene silencing	blastnggorilla,Locus_369905			
GO:0060397	JAK-STAT cascade involved in growth hormone signaling pathway	Locus_166952			
GO:0042738	exogenous drug catabolic process	CUFF,57965			
GO:0042773	ATP synthesis coupled electron transport	blastnptroglodytes,CUFF,383474			
GO:0009820	alkaloid metabolic process	XLOC_002353			
GO:0035886	vascular smooth muscle cell differentiation	Locus_175359			
GO:0010873	positive regulation of cholesterol esterification	blastnggorilla,Locus_196608			
GO:0045653	negative regulation of megakaryocyte differentiation	blastnmmusculus,ENSMUSG00000090913			
GO:0051592	response to calcium ion	blastnmmulatta,CUFF,184706			
GO:0010873	positive regulation of cholesterol esterification	CUFF,57965			

The pipeline

Logistic model

- A binary logistic model is simple way of integrating our FPSs into a single score.
- It is used to estimate the probability of a binary response based on one or more predictors.
 - Here the binary variable is 1 if gene *a* is annotated with a term *k*, 0 if otherwise.
 - The predictors are the single-species FPSs.

Validation

 Log odds ratios are a mesure of the extra information carried by each species on top of the information provided by all other species.

	Full n	Ill model Primates only		Univariate		
	Log_odd	Std_err	Log_odd	Std_err	Log_odd	Std_err
hsapiens	0,7477	0,0092	1,5412	0,0105	3,5867	0,0122
ptroglodytes	0,1598	0,0108	0,6391	0,0113	2,0450	0,0102
ggorilla	-0,2212	0,0112	0,1023	0,0126	2,3578	0,0122
pabelii	0,0842	0,0094	0,1480	0,0091	1,1600	0,0089
mmulatta	-0,1000	0,0102	0,0518	0,0098	1,6657	0,0090
mmusculus	0,5060	0,0091	NA	NA	1,8166	0,0084
mdomestica	0,3181	0,0083	NA	NA	0,6954	0,0058
oanatinus	0,3137	0,0067	NA	NA	0,5339	0,0045
ggallus	0,1974	0,0066	NA	NA	0,4852	0,0046
xtropicalis	0,2753	0,0068	NA	NA	0,6022	0,0047

The pipeline

Validation

• Logistic Model ROC analysis with non-redundant GO.

Predictions

• The output of the logistic model is used as a score to rank our predictions.

Primates network					
GO_ld	GO_term	Gene_Id			
GO:0042738	exogenous drug catabolic process	ENSG00000248740			
GO:0030299	intestinal cholesterol absorption	ENSG00000254235			
GO:0009820	alkaloid metabolic process	XLOC_002353			
GO:0055003	cardiac myofibril assembly	Locus_175215			
GO:0055003	cardiac myofibril assembly	ENSG00000236208			
GO:0030449	regulation of complement activation	ENSG00000223956			
GO:0060968	regulation of gene silencing	ENSG00000232131			
GO:0038003	opioid receptor signaling pathway	ENSG00000231533			
GO:0032490	detection of molecule of bacterial origin	H19X			
GO:0034587	piRNA metabolic process	ENSG00000235740			

Predictions

• The output of the logistic model is used as a score to rank our predictions.

Primates network					
GO_ld	HP_term	Gene_Id			
HP:0001563	Fetal polyuria	ENSG0000251151			
HP:0005305	Cerebral venous thrombosis	ENSG0000223956			
HP:0003715	Myofibrillar myopathy	ENSG0000236208			
HP:0002914	Hyperchloridura	ENSG0000223392			
HP:0011858	Reduced factor IX activity	ENSG0000248740			
HP:0004431	Complement deficiency	XLOC_002353			
HP:0010444	Pulmonary insufficiency	H19X			
HP:0008151	Prolonged prothrombin time	ENSG0000249364			
HP:0011713	Left bundle branch block	Locus_175215			
HP:0000206	Glossitis	ENSG0000234506			

Conclusions

- We suggest that phylogenetically conserved coexpression is a valuable tool to investigate transcript function.
- Our leave-one out analysis on coding genes confirms the predictive power of the guilt by association principle.
- We are therefore able to project onto IncRNAs the abundant functional annotations available on protein-coding genes using gene networks built upon gene expression data.

Perspectives

- As we have pointed out in the past (Piro et Al. 2011) it is advantageous to take into consderation tissue specificity alongside coexpression when considering the problem of functional annotation.
- Threfore we want to apply our pipeline to the GTeX dataset.
- We also plan to integrate other sources of information such as miRNA-IncRNA interactions in order to approach a gold-standard functional prediction tool.

Acknowledgements

Paolo Provero

Ivan Molineris

Elena Grassi

Ugo Ala

Mattia Forneris

Davide Marnetto

Simona Baghai

Elisa Mariella

Marika Catapano

for their advice, mentoring and invaluable support.

The pipeline

